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1 Objectives

A well-documented problem in the analysis of data collected by spacecraft

instruments is the need for an accurate, efficient representation of the data

set. The data may suffer from several problems, including additive noise,

data dropouts, an irregularly-spaced sampling grid, and time-delayed sam-

piing. These data irregularities render most traditional signal processing

techniques unusable, and thus the data must be interpolated onto an even

grid before scientific analysis techniques can be applied. In addition, the ex-

tremely large volume of data collected by scientific instrumentation presents

many challenging problems in the area of compression, visualization, and

analysis. Therefore, a representation of the data is needed which provides

a structure which is conducive to these applications. Wavelet representa-

tions of data have already been shown to possess excellent characteristics for

compression, data analysis and imaging.

The main goal of this project is to develop a new adaptive filtering al-

gorithm for image restoration and compression. The algorithm should have

low computational complexity and a fast convergence rate. This will make

the algorithm suitable for real-time applications. The algorithm should be

able to remove additive noise and reconstruct lost data samples from images.

2 Introduction & Accomplishments

The problems of image restoration and compression have received widespread

attention in the past two decades. There are several linear and nonlinear

techniques that have been proposed. One of the methods used is linear pre-

diction using adaptive filtering. The goal of the adaptive filter is to minimize

a cost function in real time with low numerical complexity and simplicity

of implementation. Most of the adaptive algorithms have to trade-off be-

tween computational complexity and performance. For instance, the least

mean squared algorithm (LMS) is widely used in many applications because

of its low computationally cost even though it has a somewhat slow conver-

gence rate. In contrast, the recto'sire least square algorithm (RLS) has fast

convergence and low mean squared error, but it has a high computational

cost.

Recently, there has been some interest in the implementation of adap-

tive filters in the frequency domain. Advantages in performance have been
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reported in severalapplications. In this project wedevelopnew adaptiveal-
gorithms and investigatetheir implementationin the waveletdomain. These
algorithms are then usedin conjunction with algorithms for lost samplere-
construction for usein imagerestoration and compression.In particular, we
haveaccomplishedthe following in this project.

2.1 Accomplishments

Developed a new adaptive filtering algorithm called the Fast Euclidean

Direction Search (FEDS) method. This algorithm has a low computa-

tional complexity of O(N) and a convergence rate which is comparable

to the RLS.

2. Developed 2-D versions of the FEDS algorithm and their variations.

, Investigated the use of the 1-D and 2-D FEDS algorithms for many

applications. The results are quite impressive and outperform those of

existing methods.

4. Implemented FEDS algorithms in the wavelet domain.

5. Implemented an algorithm for lost-sample-recovery in conjunction with

the FEDS method. We used this for image restoration and compression

with encouraging results.

Extra Work We have started working on the design and implementation of

2-D mnltiplierless filters. Multiplierless filters are those that have coefficients

which are only powers-of-two. Therefore, multipliers are simply replaced by

shifters. These filters have high computational speed and low cost. Multi-

plierless 2-D filters have tremendous potential for use in image restoration,

compression, and video processing. We have developed some design methods

for multiplierless filters. Further design and implementation work on this

topic will be conducted in the future.

2.2 Publications

The following publications resulted from this project.
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sion," J. Digital Signal Processing, Vol. 9, No. 4, pp. 315-328, 1999.
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The rest of the report is organized as follows. In Section 3, the deriva-

tion of the FEDS algorithm is presented. In Section 4, the wavelet domain

implementation of the FEDS is described. Section 5 reports some results of

the application of these algorithms for image restoration. In Section 6, some
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newresultsare reportedon the designof multiplierlessdigital filters. Section
7 is the conclusion.

3 Euclidean Direction Search Adaptive Algo-

rithm

The Euclidean Direction Search (EDS) algorithm has been reported by the

PI and his research team in [6], [7], [81, [9], [10]. In this section, we present

the basic derivation and some features of the algorithm.

The EDS algorithm is essentially a derivative of the Powell and Zangwill

DS algorithm. In adaptive applications, we consider the following quadratic

optimization problem,

J_ (w) = min {wTQ (n)w - 2wTr (n) + a2 (n)}
wGR N

(:)

where Q (n) is an N x N symmetric positive definite matrix, r (n) is a column

vector of order N, w is the unknown weight vector, and a 2 is a variance of

the desired signal, d. The mininmm of Jn (w) can be calculated by setting

the gradient to zero,V _' °J"(w2 = 0 Obviously, the optimal solution is
0w

Wopt_- Q-lr.

For the least squares optimization problem, the cost function can be ex-

pressed as,

n

i=1

n

= _ A_-_(d(i)- wTx(i))2 (3)
i=1

= a](n)-2w T(n) r(n)+

w T (n) Q (n) w (n) (4)



where

= (i) (5)
i=1

= AQ(n- 1) + x(n)x T (n) (6)
rt

= (7)
i=1

= Ar(n- 1) + d(n)x(n). (S)

x (n) = [x(n) x (n - 1) x (n - 2) ... x (n - N + 1)]ris an input vector to the

adaptive filter of length N at time n, d (n) is a desired signal, and k is a

forgetting factor. Consider the update weight iterative function

w (n + 1) = w(n) + a (n) g(n) (9)

where a (n) and g (n) are step size and search direction at iteration n, re-

spectively. One can obtain the best step size to minimize the next step cost

function by setting _7_ ex a&(w+_g) = 0 as follows,

0J_ (w+c_g)
= 0 = 2grQ (n)(w+ag) - 2gTr (n).

As a result,

c_ = gT(Q(n)w_ r(n)) (10)
grq (n) g

The proposed algorithm utilizes the Euclidean direction, that is, g(i) =

[0 ... 0 1 0 ... 0] T, where 1 is located in the i-th position. This set of di-

rectional search allows tts to update the weight vector in a simple manner.

Considering equation (10), when the i - th position of the direction is se-

lected, we pick up the i - th element of vector (Q (n) w - r (n)), and simply

divide it by Q (i, i). The EDS algorithm needs totally N rounds to com-

pletely update all weight elements in a filter. The algorithm is described

explicitly in Table 1. We denote (w)i and (r)i as the i - th element of weight

vector, w, and, cross correlation vector, r, respectively, q(0 is i - th row of



matrix Q.

For n= 1,2,...

For i = 1,... ,N

(I) ¢ = (q(i))Tw -- (r)i ;

(2) _= (q(_))_;
(3) if a>0 a--Z, (w)i (w)_+c_;

(4) q(_) = £q(i) + (x(k + 1)),x T (k + 1)

(5) (r)_= A(r)_+ (×(_+ 1))_d(k + 1)
end i

Table 1. EDS Algorithm

The EDS algorithm needs N (3N + 3) multiplications for each incoming

data sample. In other v_vrds, it has O (N 2) computational complexity I7].

This is relatively high compared to other algorithms, although EDS has com-

parable performance. There is however, an alternative approach which can

reduce the computational cost to O(N). The new algorithm is the so called

EDS1 or Fast-EDS (FEDS)/6], [7], [SJ, [9], [10J. In order to decrease the com-

putations to O (N), we need to modify the objective function into a block

exponentially weight least square form as follows:

rain Jr (w)
wER N

k-1 N

i=O j= 1

w (n):rx(iN + j))e} +

!

(d(kN+5)- w x(kN+5))2 (11)
j=l

with n = kN + l, where k is the number of full blocks within N and l is the

number of samples remaining. The new cost function leads to modifications



of q (n), r (n), and a 2

O(_) =

r(_) =

_2(n) =

To compute

written as,

where

(n) as

Q(kN+l)

Z Ak-i x(iN +j)x(iN + j)r +

i=0 \j=l

l

_x(kN + j) x (kN + j)_;
j=l

r(kN+O

Z'_k-i d(iN + j)x(iN + j) +
i=0 j=l

l

Ed(kN +j)x(kN +j);
j=l

cr2 (kN + l)

= E._ k-i d2(iN+j) +

i=0 j=l

1

E d2 (kN + j).
j=l

these parameters recursively, equation (12) and (13)

Q (kN + z) = Q (,_)

= .kq(kN) + Q (kN + l),

r(kN+l) = r(n)

= £r(kN)+F(kN+l),

l

Q(kN+l) = _x(kN+j)x(k:v+j) _
j=l

l

_(kN + l) = Z d(kN + j)x(kN + j)"
j=l

(12)

(13)

(14)

can be

(15)

(16)

(17)

(18)



The FEDS algorittml differs from the EDS algorithm in the following ways.

First, it updates the correlation matrix, Q, and cross correlation vector, r,

using the above equations. Secondly, only one Euclidean direction search is

conducted per incoming sample of data. The FEDS algorithm is illustrated

in Table 2.

For k = 1,2,...

Step (I): For i = 1,...

(1) q(0 - (0.= AQ i ,

(2)
(3)
(4)
(5)
(6)
(r)

,N

(5)_= A(r)i;
q = Q + x(kN + i)x T(klV+ i);

= _ + d(kN + i)x (kN+ i);
c (q(0 + _(i)) T= w- (r+_)i,

a = (q(i))i + (_](i))i ;

- _. (w)_ (w)_+ _;If a>0 a--a, =
end i

Step (II)

(1) Q=Q+Q; Q=0;

(2) r=r+}; }=0;
Table 2. FEDS Algoritlml

It is shown in [7] that the computational count of the FEDS algorithm is

4N + 2 multiplications, that is O (N).

3.1 Stability of The EDS Algorithm

Consider a time-invariant quadratic optimization problem,

JR(w) = rain {wTQw - 2wTr + a2} (19)
wER N

where Q is an N × N real symmetric positive definite matrix, r and variable

w are vectors of order N, and a is a scaler. The notation (.)T means the

transpose of (.).

By introducing a constant # to regulate the convergence rate, the New-

ton's method can be expressed as:

w(k + 1) = w(k) - _q-'V(k),

where w(k) denotes the variable vector at step k, V(k) a V }w=w(k)=

2Qw(k) - 2r, and 0 < p < 2.
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The steepestdescentmethod avoidsdealingwith matrix Q-: and updates
the variable vector w on the negativegradientdirection asfollows:

w(k + :) = w(_)- -_v(k),

2 and )_n,a× is the largest eigenvalue of Q.where 0 < # <
The Euclidean direction set (EDS) method in a constant environment is

equivalent to Gauss-Seidel method, which can be written as:

w(k + 1) = w(k) - _A-lV(k), (20)

where A is an N z N triangular matrix or block triangular nmtrix of Q as

shown in [17].

The stability result of the EDS algorithm can be obtained by defining

an error vector as C(k) a w(k) - w,, where w, = Q-lr is the optimal

solution of (19). Subtracting w, from both sides of (20), and using V(k) =

2(Qw(k) - Qw,), the error recursive equation becomes

c(k + 1) = (I- A-1Q)C(k), (21)

where I is the identity matrix. With an initial value of C(0), for the error

vector, the solution of (21) is

C(k) -- (I - A-:Q)kC(0). (22)

It is well known that C(k) --* 0 as k ---* oc, if and only if p(I-A-:Q) < 1,

where p(.) denotes the maximum absolute eigenvalue of (.).

Based on the fact that matrix A is a lower triangular submatrix of Q,

the following theorem provides a sufficient condition for the convergence of

the EDS algorithm. It is worth noting that this sufficient condition is inde-

pendent of the largest eigenvalue of matrix Q.

Theorem 3.1 Let Q be an N x N symmetric positive definite matrix, and

matrix A be the lower triangular submatrix or a block triangular subma-

trix of Q. The euclidean direction search (EDS) algorithm w(k + 1) =

w(k) - ½A-:V(k) ,converges to the optimal solution.

Proof. Let B -_ A + AT-Q. It is easy to verify that matrix B is a block

diagonal submatrix of Q, with each block size being 1 × 1 or 2 × 2. As proven

in the next subsection, matrix B is symmetric and positive definite. Now,
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assunmthat A and x are the eigenvalueand associatedeigenvectorof matrix
A- 1Q where

(x- A-_q)x = (1 - _)x.

Multiplying by x'A, taking the absolute value of both sides, and rear-

ranging gives

I1- A] = Ix*Ax- x*Oxl
Ix*Axl '

where (.)* denotes the conjugate transpose of (.).

Recall that for x 6 CN; x _ 0, x*Qx > 0 , x*Bx > 0, and Re{x*Ax} =

2 jx > 0,

Re{x*Ax-x*qx} < Re{×*Ax};
Im{×'a×-x'qx} = Im{x*Ax}

That is, [1 - _1 < 1,which implies that p(I - A-_Q) < 1. That is, C(k) + 0
as k _ oo in (22), and the conclusion follows.

3.2 Convergence Rate of The EDS Method

In the previous section, we have shown that I1 - k I < 1, which implies

that _ -# 0. Therefore, using similarity transformation, we may express (22)

as

C(k) = S(I- A)kS-1C(0),

where matrix A is a diagonal matrix containing the eigenvalues of matrix

(A-1Q), and A-1Q = SAS -1. For convenience, define a new vector V(k) =

S-lO(k), so that

V(k) = (I - A)kV(0).

Clearly, the convergence rate of each element vi(k) in vector V(k) is

dependent on the associated eigenvalue hi of matrix (A-1Q).

The quantity ri = 1 -/_i is known as the "geometric ratio". Note that

when the absolute value of ri is less than 1, the rate of convergence increases

as ri decreases.

As is well known, the overall convergence rate r cannot be expressed in

a simple closed form. But fortunately, the absolute vahm of geometric ratio

r is lower bounded. So, we indicate that the convergence performance of the

EDS method is superior to the steepest descent method by showing that the
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lower bound Irlbo_nd in the EDS method is lower than that of the steepest
descent method.

Throughout the rest of the chapter, At(.), )'max(.) and Amin(.) will denote

the ith, the largest and the smallest eigenvalues of matrix (.), respectively.

The ith geometric ratio, for the steepest descent method, is r/ = 1 -

2 The overall convergence rate is lower#Ai(Q), where 0 < /2 < _m_x(Q)"
bounded as

[r I > max{ll - ,Amax(O)[, I1 - #Amin(Q)l}. (23)

The best step size # for the convergence occurs at the cross-point: #Amax (Q)-

2 . Substituting it into (23)1 = 1 - #Ar, i,(Q),which gives # = _m_x(Q)+_.,_.(Q)

yields Irl > _m_x(Q)-_m_.(q) So, in the steepest descent method,
-- Amax(Q)+Amin(Q) '

Amax(O)- Ami_(O)

= Amax(Q) + Amin(O)

2
(24)

= 1 _x(q) + 1

where _m_(q) equals the condition number of Q.

Note that Ir[bo_,_d decreases as the ratio _m_(Q) decreases. Hence, the_m_.CO)

convergence rate increases as the ratio _ decreases.Am_.(Q)
In order to compare the bounds between two methods, let's prove the

following lemma first•

Lemma 3.1 Assume Q is an N x N symmetric positive definite matrix,

and matrix B is a block diagonal submatrix of Q, such as

B

qll q12 0

q21 q_2

0 q33
q43

**.

,, •

with each block being square.

definite, and

q34

q44

• '' 0

• " • 0

0 qN-1,N-1 qN,N-1

qN, N-1 qN,N

Then, matrix B is symmetric, positive

Amin(B) _/_min(Q); Am_x(B) _< A.,ax(Q).
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Proof. For i = 1, 2,..- , N, the ith principle submatrix Qi of Q is the i x i

submatrix consisting of the intersection of the first i rows and columns of Q.

Let Bj denote the jth block submatrix in B, i.e. B = {BI®B2... • BL}.

Since any principle submatrix of a symmetric positive definite matrix is sym-

metric positive definite and ),k(Q) < Ak(Qi) <_ Ak+N-i(Q) for each integer

k such that 1 < k < i [14], it therefore, follows that the first block in B is

symmetric, positive definite, and kmin(B1) > kmi.(Q); km_(B1) _< A,._x(Q).

Recall that there exists the permutation matrices which can bring the

other blocks being the first block without effect of the symmetric and positive

definite properties [16], and

Amin(B) = min {Ami,(Bj)};
j=I,...L

Ama_(B) = max {Amax(Bj)}.
j-=I,...L

We thus proved that matrix B is symmetric, positive definite, and

Amin(B) > _min(Q); Am_(B) < A,_x(Q). (25)

In the EDS method, the overall convergence rate Irl _> max {ll - Ai(A-1Q)I},
i=1,2,... ,N

and

IVlbound = sup { 1 . (26)
A- 1Qx=_x;x¢0

Since x*Qx is real, the supremum occurs when x*Ax is real. Note that,

if x*Ax is real, then x*Ax = x*-q_-e+Bx and x*Ax - x*Qx = x*B--_2 x. There-

fore,

Irlbo_d <--

2x* x

1 _up {_}+1
: x6RN;x:# 0

1 2
su (x*Bx'l ._

xER N ;x#0

sup { Ix*Qx - x*Bxl
x*Qx + x*Bx }

x*AxERN;x#0

if x*Qx >_ x*Bx; /

if x*Qx < x*Bx;

{11 2 if }
_+i if x*Qx > x*Bx;

< "krnln _B)

- _---_+a x*Qx < x*Bx;
Xrnin (Q)

(27)

Thatis, lrlbo_.d<max{l_ 2 _ }- _+1, 1 - .
Amin(B ) _+1
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RecallLemma3.1,andnote that whenthe equality in (25)occurs,Irlbo_,,_=
0. Therefore,_ > _ and _ > _ are true in general,which

Arnin(Q) Amln(B) Amin(Q) "_mln(O)

asserts that Irlbound in the EDS is lower than that in steepest descent method.

If _ is close to 1, with proper step size It, both EDS and steepest
Amin(q)

descent method converge fast. However, when "_m,,,,cq)is large, the last " <
Amin(q)

" in (27) is a very conservative step. Since matrix B is a block diagonal
Ix'qx-x*Bx[

submatrix from Q and matrix Q is central majorized, sup x-qx+×-B×
xERN;x#0

is most likely close to the ratio _mi.(B)-Am_n(Q) instead of Ama,(Q)-_,,i.(B) or_...(B)+_,,..(Q) _m_(q)+_.(B)

Ama×(B)-Ami.(Q) i.e. when _=_(q________2_is large,

Irlbound <_ sup { Ix*Ax - x*qx[ }

,km_,,(B)- .kmin(q) (28)
Amin(B) + Amin(q) '

This implies that the convergence rate of EDS is limited by the condition

number of matrix Q somewhat too. In addition, (28) also exploits the fact

that the double direction search seems to converge more rapidly than the

one direction search because ,_min(B) is smaller and more close to -_mi,(Q) in

EDS2.

Example 3.1: Consider a simple example of a single-input adaptive

linear combiner with two weights. The input and desired signals are sampled

sinusoids at the same frequency, with M = 6 samples per cycle. The input

correlation matrix Q and the correlation vector r are calculated as follows:

= 2 = 0.25 0.5 ;
Xk-lXk Xk_ 1

r = E{[dkxk dkxk-1]}T=[o _,/g]T2

Solving det()_I - Q) = 0, gives that )_mi.(q) = 0.25, ,_m_x(q) = 0.75. From

(24), = -12"

InEDS, A= 0.25 0.5 0 0.5 "

_ 1 based on (26).,kmi,(n-'q) = 0.75, ,_m_(A-_O) = 1, and Irlbo_n - g
1 minimally.From (28) and Ami,(B) = A_,,_(B) = 0.5, we conclude that Irl 2

14



4 Wavelet Transform

In this section, wavelet transform is briefly overviewed. The simplest ap-

proach to start is to consider one-dimensional wavelet transform. Wavelet

transform is a signal decomposition method using orthogonal basis. Starting

with a signal x (t), which can be expressed as a linear combination as,

x(t) = E dial(t) (29)
l

where I is a integer index, dl are decomposition coefficients, and _z (t) denotes

the expansion set. For wavelet analysis, the expansion set is constructed

from a mother wavelet, _. The scaling and translating version of the mother

wavelet, _j,k (t), produces more orthonormal basis, which are,

where j, k are integers. Hence equation (29) becomes

(30)

x(t) : }2 _ dj,k_,k(t) (31)
j k

j k

In multiresolution analysis, there is another basic function called scaling func-

tion, c2 (t), in addition to wavelet _ (t). These two functions are highly related

and used to form subspaces in L 2 (R). The relationship of subspaces can be

written as,

VoC V_C V2c ...

where Vj denotes level-j subspace spanned by

C L 2

scaling function (Pj,k (t), _j,k (t) -_-

2_ (2it - k). The difference between basis in subspace Vj and V3.+1 is the

wavelet basis _j,k (t). In other words, wavelet function _bj,k (t) spans subspace

Wj. = Vj+I-Vj. It is required that @j,k (t), Cj,k (t)} = 0, for all appropriate

j, k, and 1. Consequently, wavelet expansion yields

x(t)= _ c0,_0, (t)+ }2 Z dj,__,_(t) (33)
k k j=O

15



where

In discrete time signal applications, the digital wavelet transform (DWT)
operation canbedoneby usingfilter banks.The configurationof DWT filter
bank is composedof a numberof high passfilters, low passfilters, and dec-
imators. Conversely,to perform inversedigital wavelet transform (IDWT),
somecorrespondinghigh passfilters, low passfilters, and interpolators are
needed.

In order to transform a signal from time domain into waveletdomain a
transformation matrix, T is required.Basically, the elementsin the transfor-
mation matrix areobtained from the coefficientsof high passfilters and low
passfilters. The details of constructing the transformation matrix, T can be

found in [2] and [13]. This matrix is given by

x = Tx (34)

where X (n) is the transformed signal in the wavelet domain and x (n) is a

sig_lal in the time domain.

Now consider 2-band two-dimensional wavelet transform, the same man-

ner as one-dimension is used to decompose data into subbands except that

two scaling functions, _j,k (t) and Cj,k (t), perform wavelet transform in the
horizon and vertical directions. The transformation matrix, T, for two-

dimensional wavelet transform can be calculated by using those scaling func-

tions. The transformation equation can also be written as,

XLL = TLLX (35)

XLH = TLHX (36)

XHL = THLX (37)

XHH = THHX (38)

where XpQ are images in wavelet domain resulted from performing P opera-

tor in horizontal and Q operator in vertical direction. H and L denote high

pass and low pass filtering respectively. And x is an image in time domain.
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4.1 Wavelet Transform Based Adaptive Filtering

Wavelet transform is a unitary transform that decomposes a signal by using

wavelet basis functions. Some work on wavelet based adaptive filtering [1],

[2], [3], [4], [5], indicated advantages in the wavelet domain over time domain.

The impact of these results to the EDS algorithm comes from subband de-

composition properties of the input images. Since each decomposed image

contains different frequency components, they are orthogonal to each other.

This orthogonality of the transformation results in faster convergence of the

EDS.

From the cost function in equation (1),

Jn(W)= rain {wTq (n)w - 2wTr(n)+ 32(n)}
wCR N

we have,

r(n)-- E[d(n)x(n)]

In the wavelet domain, we transform the input signal x, using equation (34)

for one-dimensional and equations (35)-(38) for two-dimensional. The corre-

sponding correlation matrix Qw and cross correlation vector r_, are,

= E[X(n)X(n) T]

= E[Tx(n) x(n)W T]

= TE[x(n)x(n)T]v T

= TQT T, (39)

Q_(_)

rw(_) = E [d(_)X (_)]
= E [d (n) Tx (n)]

= TE[d(n)x(n)]

= T_(n)

The Wiener optimal solution in the wavelet domain is

W_o_ , = Q_lrw

= [TQTT] -1Tr.

(40)

(41)

(42)
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4.2 Image restoration in Wavelet Domain

In our previous study [8], we have shown the outstanding SNR improve-

ment in image restoration application using FEDS algorithm in time domain.

The corrupted noise in testing images is removed by linear predictor using

(K - 1) x (L - 1) FIR filter. The output of the filter can be obtained as

K-I L-I

i=0 j=0

where (i,j) ¢ (0,0), and x(nl,n2) is the noisy image. Because of the fact

that images have non zero mean, coefficient Woo is added into the above

equation. From previous section, we know that wavelet transformation can

be done by using equations (35)-(38). For M-band wavelet transform, where

M = 2, we transform two dimensional data in each level. As a result, there

are 4 transformed images which contain different information. Each image is

restored in the wavelet domain separately as shown in Figure 1. As a result,

we have 4 restored images, Y's, in wavelet domain as follows:

K-1 L-1

i=0 j=0

K-1 L-1

i=0 j=0

K-1 L-1

YHL(?_I'rt2)-_- EE

i=O j=O

K-1 L-1

i=0 j=0

WijXLL (rtl-i, n2-j) -_- Woo

wijXLH (nl_i, rt2_j) + WOO

wijXHL (Ttl-i, n2-j) _- WOO

wijXHH (hi-i, n2-j) + WOO

(43)

(44)

(45)

(46)

The final image in time domain can be obtained by inverse wavelet trans-

forming of these 4 restored images, i.e. YLL, YLH, YHL, YHH.
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Figure 1: Adaptive predictor configuration

5 Simulation Results

5.1 Image Restoration

To demonstrate the performance of the EDS algorithm in the wavelet domain,

we conducted simulations for image restoration in both time and wavelet

domain. In this simulation, l-level wavelet transform, with Daubechie-8

basis, is applied to lena and clown images. The restoration process using

FEDS algorithm is performed in each subband image and then the restored

image is obtained by inverse wavelet transform of those subband restored

images. The simulation results is shown as the improvement of SNR (SNRI)

in Table 3.

SNR = -1.8dB SNR = -TdB

Time Domain Wavelet Domain Time Domain Wavelet Domain

Lena 9.4 9.9 11.9 13.1

Saturn 7.7 8.7 11.0 12.4

Table 3. Comparison of SNRI using FEDS algorithm between in time and wavelet domain,
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It is obvious that EDS algorithm and FEDS algorithm in wavelet domain
exhibit improvementover their time domaincounterparts.

5.2 Image Restoration with Lost Samples

In real world applications in communication systems, received images at the

receiving end are not only corrupted by noise but also lose some data or

samples. Therefore, it is necessary to recover those lost data points prior

to restoring the images. The configuration of the system is shown in Fig 2.

xs is an image with lost sample, x' is an image with reconstruction of lost

samples, and :_ is a final restored image.

To reconstruct the lost samples or data in an image, method described

in [11] is used. The reconstruction subsystem is illustrated in Fig 3. xs is

a lost sample image which is an input to the reconstruction system, xstp is

obtained by low pass filtering xs. The input image is also, parallely, fed to

hard limiter and rectifier to produce xp. Therefore, it is obviously seen that

Xp represents sequence of impulses where the lost samples are located, xp_p

is a low pass filtered version of xp. Division of x_ and xp,, yields an image

without lost of samples, x'. Detailed derivation of the reconstruction of lost

samples in one dimension data can be found in [11]. Now, we can perform

noise cancellation of the reconstructed image by passing x' to the adaptive

predictor which is operating in wavelet domain to finally obtain an estimate

of the original image, d:.

SNR =-l.SdB SNR = -7dB

Lena 12.1 12.5

Saturn 8.6 11.0

Table 4. SNRI using FEDS algorithm in wavelet domain with 20% lost of samples of noisy images.

Table 4 and Figures 4 and 5 are the simulation results when 20% of samples

in the noisy images are lost. From the images and the SNRI numbers, it is

clear that the developed system achieves significant improvement in image

restoration.

6 Multiplierless Filters

Multiplierless digital filters are important due to their high computational

speed. In addition, when these filters are implemented in hardware, the elim-

ination of the multipliers results in a reduction in cost. In two dimensional
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Noise Cancellation

(FEDS Algorithm)

Figure 2: Image restoration block diagram

x (n ,n ) __ x (n. ,n_) x'(n:,n 2)

-1 Pip1 ')

xp(n ,%)

Figure 3: Reconstruction of lost sample subsystem

(2-D) signal processing, these are very significant advantages because of the

large amounts of filtering required in such applications as image and video

processing. Several techniques have been developed for designing 2-D multi-

plierless FIR and IIR filters during the past decade [18]-[21]. Design methods

for 2-D state space multiplierless filters based on a generic algorithm have

been given in [18],[19]. Design of multiplierless FIR filters using a McClel-

lan transformation were presented in [20],[21]. For the one-dimensional case,

there are also various techniques proposed for designing multiplierless filters

such as a design which considers simplified parallel implementations of FIR

filters for signed powers-of-two implementation [22],[23] and a design of mul-

tiplierless IIR elliptic filters based on sensitivity analysis[24]. Also, multipli-

erless filters have been designed using periodically shift-variant (PSV) filters

[25]. The use of periodic filters increases the total number of coefficients,

thereby providing the necessary degree of freedom for obtaining power-of-

two coefficients. If the coefficients are all power-of-two, then they can be

implemented using simple shifting operations only.

In this project, we derive the mathematical tools required to design 2-D

PSV filters with power-of-two coefficients. We start with a given filter in
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the state-spacedomainand convert it to an equivalentPSV filter. Then the
coefficientsof this filter can be designedto be power-of-two. An exampleis
givento illustrate the designmethodology.

6.1 2-D State-Space System

The state-space model used in this paper is the second model of Fornasini-

Marchesini (FM) [26]. For a linear shift variant (LSV) system, this model
can be written as

= Al(h,k)x(h,k + 1)+
A2(h,k)x(h + 1,k)+

Ao(h,k)x(h,k)+
B(h,k)u(h,k)

= C(h,k)x(h,k) (47)

where x(h, k) is an L x 1 state vector, u(h, k) is a scalar input, y(h, k) is a

scalar output, Ao(h, k), Al(h, k), A2(h, k) are L x L state matrices, B(h, k) is

an L x 1 vector, and C(h, k) is a 1 x L vector.

For the special case when the state matrices are related as

Ao(h, k) = -Al(h, k)A2(h, k)

and

Al(h,k)A2(h,k) = A2(h,k)A_(h,k),

the system is called the Attasi model. A filter is called a periodically shift

varying (PSV) filter with period (P,Q) if all the coefficients of the state

matrices are periodic with a period (P,Q) i.e. A(h + raP, k + nQ) = A(h, k)

for all integers (m, n).

For simplicity, we assume that C(h, k) is a constant vector C. Then,

the impulse response at position (re, n) due to an input at position (i,j)

(h(m, n; i,j))can be derived in the following way.

Let u(i,j) = 5(i,j) , Find y(m,n) for m = i,i + 1,i + 2,... and n =

j,j + 1,j + 2, ... in a recursive way and then use an induction method to get

a closed form for an impulse response assuming a zero initial condition (i.e.

x(h,k)=O forh< lork< 1).
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For m = i,

(re,n)= (i,j); y(m,n) = Cx(i,j) = 0;

(re,n)= (i,j + 1); y(m,n) = Cx(i,j + 1) = 0;

(re,n)= (i,j + 2); y(m,n)=Cz(i,j + 2)=0;

(m,n)= (i,j + 3); y(m,n) = Cz(i,j + 3) = 0;

(re,n)= (i,2 + 4); v(_,_) = cx(i,j + 4) = o.
For in = i+1,

(re,n)= (i + 1,j) gives
v(_,,_) = cx(i + 1,/) = o.

(re,n)= (i + 1,j + 1) gives

y(_, _) = c_(i + 1,2 + 1)
=CB(i,j)u(i,j)

= CB(i,j)5(i,j) = CB(i,j).
(m,n)= (i + 1,j + 2) gives

y(,_,,_) = Cx(i + 1,2 + 2)
= c[mo(i,j + 1)x(i,j + 1)+

A_(i,j + 1)x(i,j + 2)+

A2(i,j + 1)x(i + 1,j + 1)]

= CA2(i,j + 1)t3(i,j).

(m,n)= (i + 1,j + 3) gives

y(m,n) = Cx(i + 1,j + 3)

= C[Ao(i,j + 2)x(i,j + 2)+

A_(i,j + 2)x(i,j + 3)+

A2(i,j + 2)x(i + 1,j + 2)]

= C[A2(i,j + 2)A2(i,j + 1)]B(i,j).

For m = i+2,

(m,n)= (i + 2,j) gives

y(m,n) =Cx(i + 2,2)=0.

(re,n)= (i + 2,j + 1) gives

y(_,_) = Cx(i + 2,2 + 1)
= C[Ao(i + 1,j)x(i + 1,j)+

Al(i + 1,2)_(i + 1,j + 1)+
A2(i + 1,j)x(i + 2,j)]

= C&(i + 1,j)B(i,j).
(m,n)= (i + 2, j + 2) gives

y(,_,_) = cx(i + 2,j + 2)
= C[do(i + 1,j + 1)x(i + 1,j + 1)+

d_(i + 1,j + 1)x(i + 1,j + 2)+
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A_(i + 1,j + 1)x(i ÷ 2,j + 1)]

= C[Ao(i+ 1,j + 1)+
Al(i + 1,j + 1)A2(i,j + 1)+

A2(i + 1,j + 1)A_(i + 1,j)]B(i,j).

(m,n)= (i ÷ 2,j + 3) gives

y(._,_) = cx(i + 2,j + 3)
= C[Ao(i + 1,j + 2)x(i + 1,j + 2)+

Al(i + 1,j + 2)x(i + 1,j + 3)÷

A_(i+ 1,j + 2)x(i + 2,j + 2)1
= C[Ao(i + 1,j + 2)A2(i,j + 1)+

Al(i + 1,j + 2)m2(i,j ÷ 2)A2(i,j + 1)+

A2(i + 1,j + 2){Ao(i + 1,j + 1)+

Aa(i + 1,j + 1)A2(i,j + 1)+

A2(i + 1,j + 1)A_(i + 1,j)}]B(i,j).

For m = i+3,

(m,n)= (i + 3,j) gives

y(._, _)= cx(i + 3,j)= 0.
(m,.)-- (i + 3,j + 1) gives

y(m,n) : Cx(i + 3,j + 1)

= C[Ao(i + 2,j)x(i + 2,j)+

A_(i + 2,j)x(i + 2,j + 1)+

A2(i + 2,j)x(i + 3,j)]

= C[AI(i + 2,j)A_(i + 1,j)]B(i,j).

For m = i+4,

(m,n)= (i + 4,j) gives

y(._,_) = c_(i + 4,j) = 0.
(re,n)= (i + 4,j + 1) gives

y(m,n) = Cx(i + 4,j + 1)

= C[Ao(i + 3,j)x(i + 3,j)+

A_(i + 3,j)x(i + 3,j + 1)+

d2(i + 3,j)x(i + 4,j)]

= C[A_(i + 3, j)Al(i + 2,j)

A_(i + 1,j)]B(i,j).

Since the input is an impulse 5(i,j), the output y(m, n) is the impulse

response h(m, n; i, j). By induction, we can see that for m > i+1, n :> j+ 1,

h(m,n;i,j) = CA(m- 1,n- 1)B(i,j) (48)
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whereA(i, j) = IN ( N*N Identity matrix )

A(m,n)=O, m<iandn<j

and for m > i, n >_ j

A(_,_) Ao(m,n)A(m- 1,n- 1) +

A1(m,n)A(m - 1,n) +

A2(m,n)A(m,n- 1). (49)

The above impulse response is for a general LSV system without peri-

odicity. Now we specialize it to a linear shift invariant (LSIV) system, the

model of which can be written as

x(h + l,k + l) = Alx(h,k + l)+

A2 z(h + 1, k)+

Aox(h, k)+

B_4h,k)
y(h,k) = Cx(h,k) (50)

w

with A0 = -A1A2 and A1A2 = A2A1.

The impulse response h(nl, n2) of this LSIV system can be derived us-

ing (48) and (49) with all constant coefficients. The details are omitted for

brevity. The final result is

CA(nl-1)-_('_-l)-Bu(nx 1 n2 1)h(nl,n2)= 1 2 - , - • (51)

6.2 Multiplier-free PSV structure

It will be shown in this section that a 2-D system consisting of a Hold (which

increases the signal rate by a factor of (1,Q)), a PSV system, and a deci-

mation (which decreases the signal rate by a factor of (1,Q)) connected in

cascade is a shift-invariant system. Thus we can realize a shift-invariant

system using a PSV structure as shown in Fig.1. For a multiplier-free
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y(nl  

Figure 6: LSIV equivalent system

realization, the elements of matrices are restricted in a power-of-two set

Sn : {-l-2 -n, -t-2-n+l, .. -, -t-1, 0}.

As a first step towards deriving an impulse response of the system of

Fig. 1, we find the impulse response of the PSV system.

For simplicity, we make the following assumptions: (a) In (47), let A1 (h, k)

be a constant matrix A1; (b) A1 is commutative with A2(h, k); (c) A2(h, k)

are commutative among themselves and periodic with period (1,Q).

Using h(m, n; i, j) in section 2 and replace matrices A1, A2 and A0 with a

constant matrix A1, periodic(1,Q) A2(h, k) (e.g. A2(h+i, k+nQ) = A2(h, k)

for all integer (i, n)) and Ao(h, k) = -A1A2(h, k) respectively, then the PSV

impulse response at any position (m,n) due to an input at (i,j) can be derived

aS:

h(m,n;i,j) = CX(rn, n)B(i,j)

where X (m, n) is given by the following.

For m = i+1,

X(i + 1,j + 1)= IN

X(i + 1,j + 2) = A2(i,j + 1)

X(i + 1,j + 3) = A2(i,j + 1)A2(i,j + 2)

X(i+l,j+4)

= A2(i,j + 1)A2(i,j + 2)A2(i,j + 3)

For m = i+2,

X(i + 2,j + 1) = A1

X(i + 2,j + 2) = AIA2(i,j + 1)

X(i+2,j+3)

= A_Az(i,j + 1)A2(i,j + 2)

X(i+2,j+4)

= A_A2(i,j + 1)A2(i,j + 2)A2(i,j + 3).

For m =i+3,
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X(i+3, j+I)=A_
X(i+3,j+2)
= A_A2(i,j + 1)
X(i+3,j+3)
= A21A2(i,j+ 1)A2(i,j + 2)
X(i+3,j+4)
= A21A2(i,j + 1)A2(i,j + 2)A2(i,j + 3).

For m = i+4,

X(i+4, j+I)=A_

X(i+4,j+2)

= m_A2(i,j + 1)

X(i+4,j+3)

= A)A2(i,j + 1)m2(i,j + 2)
X(i+4,j+4)

= A)A2(i,j + 1)A2(i,j + 2)A2(i,j + 3).

From above,we can see that X(m, n) can be written as

for m > i + 1 and n > j + 1,

n-1

x(_n,n) = A7-(_+1) II A2(i,a)
a=j+l

Thus, for m >_ i + 1, n >_ j + 1

h(m, n : i,j) = CA1 -(i+I) x

rt--I

1-I A2(i,a)B(i,j)
a= j+l

n-1

with YI A2(i,a)=IN forn=j+l.
a= j+l

Next, we find the overall impulse response of PSV system of Fig.1.

With _(_1,n2) = 5(_1,n2), we have
o Q-1

_(-_,n) = E E_(._-_,n-J).
i=0j=0

Since the summation over i is from 0 to 0, then i = 0.

Using the superposition principle, the output can be written as

(52)
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y(nl,?22) = w(nl,_2Q) (53)
Q-1

= _h(nl,n2Q •O,j)
j=O

where h(nl, n2Q " 0, j), 0 _< j < Q - 1 can be expressed by using (52) in

the following for ?21 _ 1, Tt 2 __ 1,

h(nl,n2Q " O,j) = C_1-1"'1 x

n2Q-1

II A2(O,a)_(o,j)
a=j+l

(54)

Q-1

where H A2(0, a)=INwhen j=Q-1
a=j+l

Now, (54) can also be written in the following form by using the commu-

tative property of matrices A1 and A2. For nl > 1, n2 > 1,

h(nl,n2Q " O,j) = C A_ 1-1 x

a=j+l

(n Ol /H A2(0,a)_(0,j)
a= (n2-1)Q+ j +1

h(nl,n2Q O, j) = C "'lAnl-1 X

(,_2-1)Q

H A2(o,_) B(o,j)
a=j+1

(55)
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Notice that the product overoneperiod remainsunchangedregardlessof
the starting index. Sincethe input isan impulse,the output y(nl, n2) in (53)

is the impulse response of the overall system. Combining equations (53) and

(55), the impulse response of the PSV system is the following.

For nl _ 1, n2 > 1,

h(nl,n2) = C A'_ 1-1 A2(O,a) (56)

Q-1 Q-1

xE II A2(O,a)B(O,j)

j=Oa=j+l

Thus it is shown that the overall system is linear shift-invariant. Note

that the above impulse response resembles that of the LSIV system in (51).

Comparing (56) and (51), we get C = C, A1 = A1,

Q

N= IIA:(°,a), (57)
a=l

Q )and -B= E A2(O,a) B(O,j). (58)

j=0 a I

If we restrict the elements of C and A1 to be power-of-two, then we

have a system whose characterization can be represented by matrices of only

powers-of-two coefficients.

There are several ways to find the elements of matrices A2 and B which

give the best approximation of the desired LSIV system such as using the idea

from [25] , or using minimum mean square error criteria. The optimization

method is under study at this time.

6.3 Design

It is assumed that matrices A_ and A2 are circulant matrices [25], [30]. That is

A1 and A2 are commutative and all As are commutative among themselves.

In addition, we can simplify the problem using the properties of circulant
matrices as shown below.
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Any circulant matrix A of order N x N can be diagonalized as A = F*AF,

where A is the diagonal matrix of eigenvalues, F is a DFT matrix whose kl th

element is _N exp (_j2,_( k-1)(t-1)N ) , 1 _< k,1 <_ N and F* is the complex
\ ]

conjugate of F which has property that F* = F -1. We diagonalize both

sides of (57) to get

Q

_= IIA2(0,a) (59)
a=l

Let FB = 3 and F B =/_. Then from (58) we have

)= EF A2(O,a) F*FB(O,j)
j=0 \a=j+l

= _o ( QIi a2(O'a)) _(O'j)\a=j+l
(60)

Using the criteria based on a square error in time domain,

= _ }2 (h.(nl,n2)- h(nl,n_))_ (61)

where (hi, n2) C Ra, the region of support of ha(n_, n2),which is a desired

impulse response.

Assume that a desired filter is given in a state-space form as in(51).

fornl >_ 1, n2> 1,

CA (nl- 1)A-'_o(n2-1)S (62)hd(nl,n2) = 1 2

otherwise, hd(nl, n2) = 0

Using (56) for h(nl,n2) with C = C, A1 = A1, and since all matrices

are circulant, we can diagonalize (62) and (56) using a DFT matrix. Let

--CF* = 5 and combine with (59) and (60) to get

hd(n,, n2) = -CF* F-All (n_-l) F* F--_2 ("_-1) F* F-B

= -_F*(F--_('_-I)F*)(F-_2('_2-1)F*)F-_

_-7( _, -_)_-_(-_-_)_
1 2 tJ

h('nt, n2) = --CF* F-N11('_ -I)F*F
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Q

a=l

Q-1 Q-_
E(FI &(O,a))F*FU(O,j)

j=0 a=j+l

= -CF,(F-'_("-')F ,)
Q

FA2(0, a)F ) -(H ,n2 1
a=l

Q-1 Q-1
E ( rI FA2(O,a)F*)FB(O,j)

j=0 a=j+l

Q
= _-_-(_1-1)( H A2(0, a)) '_2-1

a=l

Q-1 Q-1
E ( rI A2(O,a))B(o,j)

j=0 a=j+l

Thus the square error in time domain (61)can be written as

5N(_I-_)Q(_(_2-1)?_ / _

( H A2(0, a)) "2-_
a=l

V-1 Q-1
E( H a_(o,_))_(o,j))

j= 0 a=j+l

Note that instead of finding combination of circulant matrices A2(0,a),

we find only combinations of diagonal matrices of eigenvalues of A2(0, a).

6.4 Example

Consider a LSIV 2-D Attasi's

ing

A1 =

A2 =

F=[1

model filter using circulant matrices as follow-

0.5 -0.5 0.125 -0.125 "}

J-0.125 0.5 -0.5 0.125

0.125 -0.125 0.5 -0.5

-0.5 0.125 -0.125 0.5

0.5 0 -0.015 0.25

J0.25 0.5 0 -0.015

-0.015 0.25 0.5 0

0 -0.015 0.25 0.5

0.39 -1 0.45 ]T

-1 -1 1 ]
J
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Using the criteria (61) above with periodicity Q = 2 and elements of

{ -1 -1 0, ¼, ½, 1} the designed matricesmatrices belong to set $2 = -1, 2, 4,

are obtained in the following:

A1 = A1 and C = C

A2(0, 0) =

A (0, 1) =

0.5

-0.5

0

0.5

0.5 0

O.5 0.5

0.5 0.5

0 0.5

0.5

0.5

-0.5

0

0.5

0

0.5

0.5

B(0,0) = [-1 -1

B(0,1)= [ 1 -0.25

0 -0.5

0.5 0

0.5 0.5

-0.5 0.5

0.5

0.5

0

0.5

-0.25 - ]T

-1 -0.5 IT

This design yields an error E = 0.0108. The frequency responses of the de-

sired LSIV filter and the designed multiplierless filter are quite well matched

as shown in Fig. 7.

loo _..

o 0

Fig. 7a.) Desired magnitude response.
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6.1 '

2 l /÷ _<.i_;)_ "_ _

Fig. 7b.) Designed magnitude response.

7 Conclusion

In this project, we have developed a new adaptive filtering algorithm for im-

age restoration and compression. The algorithm is called the Fast Euclidean

Direction Search (FEDS) method. We have presented the derivation of this

algorithm and all its virtues. This algorithm has then been implemented in

the wavelet domain in conjunction with an algorithm for lost sample recovery.

The overall system is then shown to perform efficiently for image restoration.

We have also presented some new results on the design of 2-D multiplierless

filters. These filters will be used in the future for image and video processing

applications.
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